Age dependency of inhibition of alpha7 nicotinic receptors and tonically active N-methyl-D-aspartate receptors by endogenously produced kynurenic acid in the brain.
نویسندگان
چکیده
In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of L-kynurenine, maintain a degree of tonic inhibition of α7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that α7 nAChR activity decreases when endogenous production of KYNA increases. Incubation (2-7 h) of rat hippocampal slices with kynurenine (200 μM) resulted in continuous de novo synthesis of KYNA. Kynurenine conversion to KYNA was significantly decreased by the KAT II inhibitor (S)-(-)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5carboxylic acid (BFF122) (100 μM) and was more effective in slices from postweaned than preweaned rats. Incubation of slices from postweaned rats with kynurenine inhibited α7 nAChRs and extrasynaptic N-methyl-D-aspartate receptors (NMDARs) on CA1 stratum radiatum interneurons. These effects were attenuated by BFF122 and mimicked by exogenously applied KYNA (200 μM). Exposure of human cerebral cortical slices to kynurenine also inhibited α7 nAChRs. The α7 nAChR sensitivity to KYNA is age-dependent, because neither endogenously produced nor exogenously applied KYNA inhibited α7 nAChRs in slices from preweaned rats. In these slices, kynurenine-derived KYNA also failed to inhibit extrasynaptic NMDARs, which could, however, be inhibited by exogenously applied KYNA. In slices from preweaned and postweaned rats, glutamatergic synaptic currents were not affected by endogenously produced KYNA, but were inhibited by exogenously applied KYNA. These results suggest that in the mature brain α7 nAChRs and extrasynaptic NMDARs are in close apposition to KYNA release sites and, thereby, readily accessible to inhibition by endogenously produced KYNA.
منابع مشابه
Age Dependency of Inhibition of 7 Nicotinic Receptors and Tonically Active N-Methyl-D-aspartate Receptors by Endogenously Produced Kynurenic Acid in the Brain
In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of L-kynurenine, maintain a degree of tonic inhibition of 7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that 7 nAChR activity decreases when...
متن کاملRegulation of GABAergic inputs to CA1 pyramidal neurons by nicotinic receptors and kynurenic acid.
Impaired α7 nicotinic acetylcholine receptor (nAChR) function and GABAergic transmission in the hippocampus and elevated brain levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the kynurenine pathway, are key features of schizophrenia. KYNA acts as a noncompetitive antagonist with respect to agonists at both α7 nAChRs and N-methyl-D-aspartate receptors. Here, we tested the hyp...
متن کاملMemantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons.
The N-methyl-d-aspartate (NMDA) receptor antagonist memantine is an approved drug for treatment of Alzheimer's disease (AD). Other such treatments are cholinesterase inhibitors and nicotinic acetylcholine receptor (nAChR)-sensitizing agents such as galantamine. The present study was designed to test whether memantine exerts any effect on the cholinergic system, in particular the Ca(2+)-conducti...
متن کاملCortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia.
The brain concentration of kynurenic acid (KYNA), a metabolite of the kynurenine pathway of tryptophan degradation and antagonist at both the glycine coagonist site of the N-methyl-D-aspartic acid receptor (NMDAR) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), is elevated in the prefrontal cortex (PFC) of individuals with schizophrenia. This increase may be clinically relevant b...
متن کاملManipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities.
Degradation of the essential amino acid tryptophan along the kynurenine pathway (KP) yields several neuroactive intermediates, including the free radical generator 3-hydroxykynurenine, the excitotoxic N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid, and the NMDA and alpha7 nicotinic acetylcholine receptor antagonist kynurenic acid. The ambient levels of these compounds are determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 337 3 شماره
صفحات -
تاریخ انتشار 2011